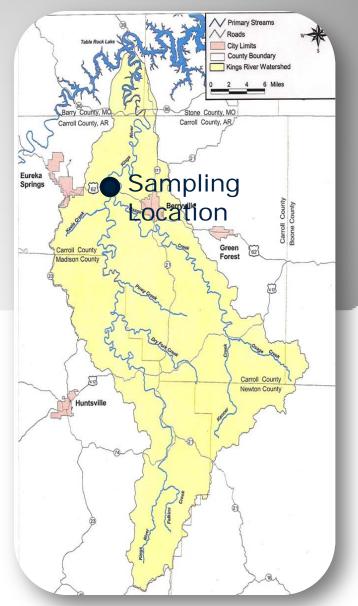
Water Quality Monitoring and Constituent Load Estimation in the Kings River near Berryville, Arkansas 2009

Brian E. Haggard

Arkansas Water Resources Center UA Division of Agriculture


Funded by ANRC through Kings River Watershed Partnership

2009 Summary: Loads and Flow-Weighted Concentrations

	CI	SO ₄	NH ₃ -N	NO ₃ -N	SRP	TN	ТР	TSS
Loads	2,156,000	4,170,000	47,000	663,000	51,000	920,000	250,000	169,710,000
FWC	3.05	5.05	0.06	0.80	0.06	1.11	0.30	206

Water samples were collected at the Kings River near Berryville, Arkansas

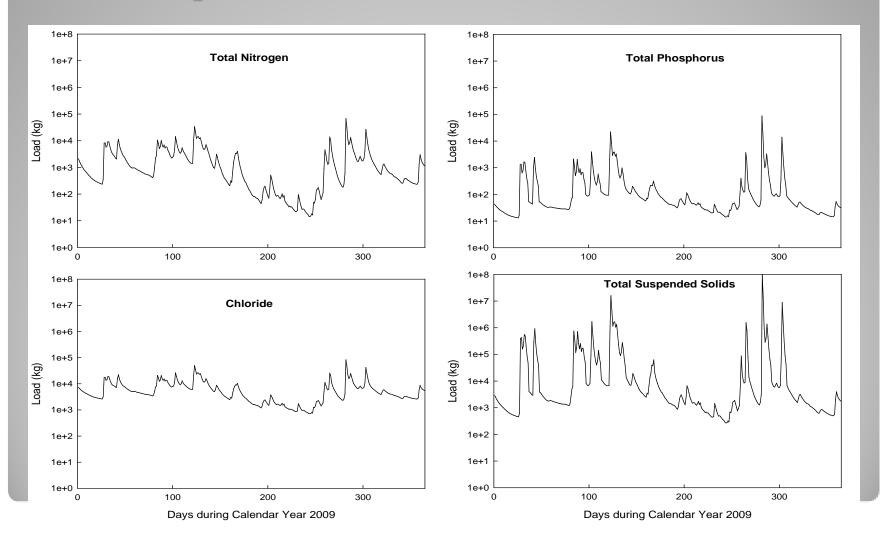
- Stage was recorded in 30 min intervals by the USGS to estimate discharge
- Water samples were collected once a week and targeted storm events
- Water samples were analyzed for nitrate-N, ammonia-N, total N, total P, soluble reactive P, total suspended solids, sulfate and chloride

Load Determination & Mean Concentration

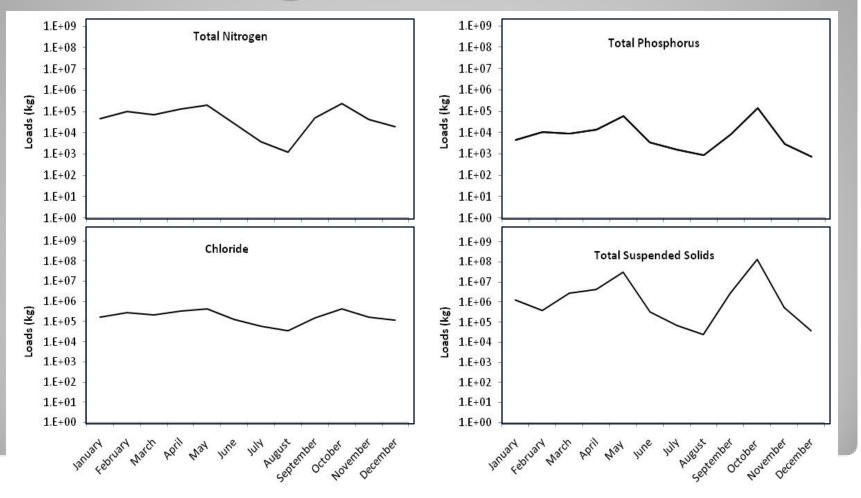
 Linear regression was used to determine the relationship between daily load, flow and seasonal factors:

> $ln(L_d) = \beta_o + \beta_1 ln(Q_d)$ -or $ln(L_d) = \beta_o + \beta_1 ln(Q_d) + \beta_2 sin(2\pi T) + \beta_3 cos(2\pi T)$

• BCF was used to remove bias from log transformations: BCF = $\frac{\Sigma e^{R}}{BCF}$

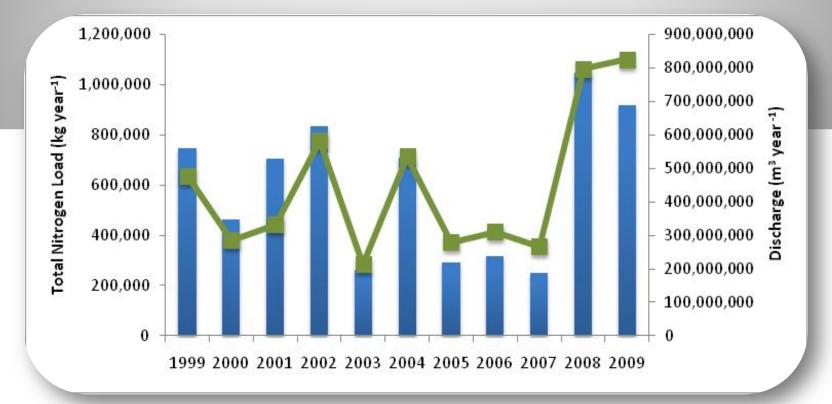

Some constituents exhibited seasonal effects...

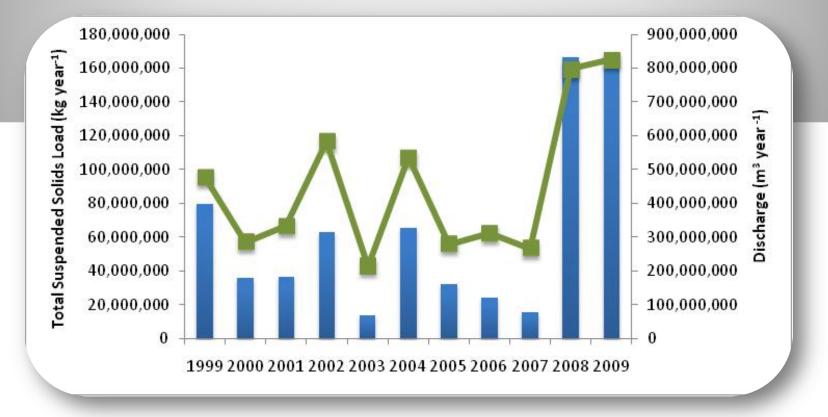
Parameter	Regression Equation	Flow Regime	R ²	Р
NO ₃ -N	$ln(L_d) = -4.98 + 1.90 ln(Q_d)$	Low	0.96	< 0.001
	$ln(L_d) = 1.44 + 0.90 ln(Q_d)$	High	0.88	< 0.001
SO ₄	$ln(L_d) = 3.29 + 0.90 ln(Q_d)$	All	0.99	< 0.001
Cl	$ln(L_d) = 4.17 + 0.71 ln(Q_d)$	All	0.97	< 0.001
SRP	ln(L _d) = -1.77 + 0.89 ln(Q _d) – 0.52sin(2πT) – 0.99cos(2πT)	Low	0.42	< 0.001
	$ln(L_d) = -5.37 + 1.39 ln(Q_d)$	High	0.73	0.004
ТР	ln(L _d) = -0.80 + 0.79 ln(Q _d) – 0.29sin(2πT) – 0.83cos(2πT)	Low	0.60	< 0.001
	$ln(L_d) = -8.08 + 1.91 ln(Q_d)$	High	0.84	< 0.001
TN	$ln(L_d) = -2.46 + 1.51 ln(Q_d)$	Low	0.98	< 0.001
	$ln(L_d) = -5.37 + 1.39 ln(Q_d)$	High	0.95	<0.001
NH₃-N	ln(L _d) = -4.98 + 1.34 ln(Q _d) – 0.28sin(2πT) – 0.79cos(2πT)	All	0.87	<0.001
TSS	In(L _d) = 0.54 + 1.24 In(Q _d) – 0.32sin(2πT) – 0.98cos(2πT)	Low	0.78	< 0.001
	$ln(L_d) = -6.92 + 2.49 ln(Q_d)$	High	0.79	0.001


And, some constituents required hydrograph separation...

Parameter	Regression Equation	Flow Regime	R ²	Р
NO ₃ -N	$ln(L_d) = -4.98 + 1.90 ln(Q_d)$	Low	0.96	< 0.001
	$ln(L_d) = 1.44 + 0.90 ln(Q_d)$	High	0.88	<0.001
SO ₄	$ln(L_d) = 3.29 + 0.90 ln(Q_d)$	All	0.99	<0.001
Cl	$ln(L_d) = 4.17 + 0.71 ln(Q_d)$	All	0.97	< 0.001
SRP	ln(L _d) = -1.77 + 0.89 ln(Q _d) – 0.52sin(2πT) – 0.99cos(2πT)	Low	0.42	< 0.001
	$ln(L_d) = -5.37 + 1.39 ln(Q_d)$	High	0.73	0.004
ТР	ln(L _d) = -0.80 + 0.79 ln(Q _d) – 0.29sin(2πT) – 0.83cos(2πT)	Low	0.60	< 0.001
	$ln(L_d) = -8.08 + 1.91 ln(Q_d)$	High	0.84	< 0.001
TN	In(L _d) = -2.46 + 1.51 In(Q _d)	Low	0.98	< 0.001
	$ln(L_d) = -5.37 + 1.39 ln(Q_d)$	High	0.95	< 0.001
NH ₃ -N	In(L _d) = -4.98 + 1.34 In(Q _d) – 0.28sin(2πT) – 0.79cos(2πT)	All	0.87	< 0.001
TSS	$\ln(L_d) = 0.54 + 1.24 \ln(Q_d) - 0.32 \sin(2\pi T) - 0.98 \cos(2\pi T)$	Low	0.78	< 0.001
	$ln(L_d) = -6.92 + 2.49 ln(Q_d)$	High	0.79	0.001

Daily Loads were variable...


Monthly Loads were least during late summer...


Phosphorus loads have been variable following the general trend in annual discharge.

Nitrogen loads in 2009 were less than that observed in 2008, even though discharge increased.

Total suspended solids loads in 2009 were similar to that observed in 2008.

The new monitoring program was successful at estimating loads at the Kings River.

- The regressions used to estimate loads considered seasonal effects, where appropriate
- And, this site also showed different relations between concentration and discharge at low and high flow

